Introduction to Surgical Technology. Third Edition. Teacher Edition [and] Student Edition.
ERIC Educational Resources Information Center
Bushey, Vicki; Hildebrand, Bob; Hildebrand, Dinah; Johnson, Dave; Sikes, John; Tahah, Ann; Walker, Susan; Zielsdorf, Lani
These teacher and student editions provide instructional materials for an introduction to surgical technology course. Introductory materials in the teacher edition include information on use, instructional/task analysis, academic and workplace skill classifications and definitions, related academic and workplace skill list, and crosswalk to…
MyD88 and TLR4 Expression in Epithelial Ovarian Cancer
Block, Matthew S.; Vierkant, Robert A.; Rambau, Peter F.; Winham, Stacey J.; Wagner, Philipp; Traficante, Nadia; Tołoczko, Aleksandra; Tiezzi, Daniel G.; Taran, Florin Andrei; Sinn, Peter; Sieh, Weiva; Sharma, Raghwa; Rothstein, Joseph H.; Cajal, Teresa Ramón y; Paz-Ares, Luis; Oszurek, Oleg; Orsulic, Sandra; Ness, Roberta B.; Nelson, Gregg; Modugno, Francesmary; Menkiszak, Janusz; McGuire, Valerie; McCauley, Bryan M.; Mack, Marie; Lubiński, Jan; Longacre, Teri A.; Li, Zheng; Lester, Jenny; Kennedy, Catherine J.; Kalli, Kimberly R.; Jung, Audrey Y.; Johnatty, Sharon E.; Jimenez-Linan, Mercedes; Jensen, Allan; Intermaggio, Maria P.; Hung, Jillian; Herpel, Esther; Hernandez, Brenda Y.; Hartkopf, Andreas D.; Harnett, Paul R.; Ghatage, Prafull; García-Bueno, José M.; Gao, Bo; Fereday, Sian; Eilber, Ursula; Edwards, Robert P.; de Sousa, Christiani B.; de Andrade, Jurandyr M.; Chudecka-Głaz, Anita; Chenevix-Trench, Georgia; Cazorla, Alicia; Brucker, Sara Y.; Alsop, Jennifer; Whittemore, Alice S.; Steed, Helen; Staebler, Annette; Moysich, Kirsten B.; Menon, Usha; Koziak, Jennifer M.; Kommoss, Stefan; Kjaer, Susanne K.; Kelemen, Linda E.; Karlan, Beth Y.; Huntsman, David G.; Høgdall, Estrid; Gronwald, Jacek; Goodman, Marc T.; Gilks, Blake; García, María José; Fasching, Peter A.; de Fazio, Anna; Deen, Suha; Chang-Claude, Jenny; Candido dos Reis, Francisco J.; Campbell, Ian G.; Brenton, James D.; Bowtell, David D.; Benítez, Javier; Pharoah, Paul D.P.; Köbel, Martin; Ramus, Susan J.; Goode, Ellen L.
2018-01-01
Objective To evaluate myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 (TLR4) expression in relation to clinical features of epithelial ovarian cancer, histologic subtypes, and overall survival. Patients and Methods We conducted centralized immunohistochemical staining, semi-quantitative scoring, and survival analysis in 5263 patients participating in the Ovarian Tumor Tissue Analysis consortium. Patients were diagnosed between January 1, 1978, and December 31, 2014, including 2865 high-grade serous ovarian carcinomas (HGSOCs), with more than 12,000 person-years of follow-up time. Tissue microarrays were stained for MyD88 and TLR4, and staining intensity was classified using a 2-tiered system for each marker (weak vs strong). Results Expression of MyD88 and TLR4 was similar in all histotypes except clear cell ovarian cancer, which showed reduced expression compared with other histotypes (P<.001 for both). In HGSOC, strong MyD88 expression was modestly associated with shortened overall survival (hazard ratio [HR], 1.13; 95% CI, 1.01–1.26; P=.04) but was also associated with advanced stage (P<.001). The expression of TLR4 was not associated with survival. In low-grade serous ovarian cancer (LGSOC), strong expression of both MyD88 and TLR4 was associated with favorable survival (HR [95% CI], 0.49 [0.29–0.84] and 0.44 [0.21–0.89], respectively; P=.009 and P=.02, respectively). Conclusion Results are consistent with an association between strong MyD88 staining and advanced stage and poorer survival in HGSOC and demonstrate correlation between strong MyD88 and TLR4 staining and improved survival in LGSOC, highlighting the biological differences between the 2 serous histotypes. PMID:29502561
MyD88 and TLR4 Expression in Epithelial Ovarian Cancer.
Block, Matthew S; Vierkant, Robert A; Rambau, Peter F; Winham, Stacey J; Wagner, Philipp; Traficante, Nadia; Tołoczko, Aleksandra; Tiezzi, Daniel G; Taran, Florin Andrei; Sinn, Peter; Sieh, Weiva; Sharma, Raghwa; Rothstein, Joseph H; Ramón Y Cajal, Teresa; Paz-Ares, Luis; Oszurek, Oleg; Orsulic, Sandra; Ness, Roberta B; Nelson, Gregg; Modugno, Francesmary; Menkiszak, Janusz; McGuire, Valerie; McCauley, Bryan M; Mack, Marie; Lubiński, Jan; Longacre, Teri A; Li, Zheng; Lester, Jenny; Kennedy, Catherine J; Kalli, Kimberly R; Jung, Audrey Y; Johnatty, Sharon E; Jimenez-Linan, Mercedes; Jensen, Allan; Intermaggio, Maria P; Hung, Jillian; Herpel, Esther; Hernandez, Brenda Y; Hartkopf, Andreas D; Harnett, Paul R; Ghatage, Prafull; García-Bueno, José M; Gao, Bo; Fereday, Sian; Eilber, Ursula; Edwards, Robert P; de Sousa, Christiani B; de Andrade, Jurandyr M; Chudecka-Głaz, Anita; Chenevix-Trench, Georgia; Cazorla, Alicia; Brucker, Sara Y; Alsop, Jennifer; Whittemore, Alice S; Steed, Helen; Staebler, Annette; Moysich, Kirsten B; Menon, Usha; Koziak, Jennifer M; Kommoss, Stefan; Kjaer, Susanne K; Kelemen, Linda E; Karlan, Beth Y; Huntsman, David G; Høgdall, Estrid; Gronwald, Jacek; Goodman, Marc T; Gilks, Blake; García, María José; Fasching, Peter A; de Fazio, Anna; Deen, Suha; Chang-Claude, Jenny; Candido Dos Reis, Francisco J; Campbell, Ian G; Brenton, James D; Bowtell, David D; Benítez, Javier; Pharoah, Paul D P; Köbel, Martin; Ramus, Susan J; Goode, Ellen L
2018-03-01
To evaluate myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 (TLR4) expression in relation to clinical features of epithelial ovarian cancer, histologic subtypes, and overall survival. We conducted centralized immunohistochemical staining, semi-quantitative scoring, and survival analysis in 5263 patients participating in the Ovarian Tumor Tissue Analysis consortium. Patients were diagnosed between January 1, 1978, and December 31, 2014, including 2865 high-grade serous ovarian carcinomas (HGSOCs), with more than 12,000 person-years of follow-up time. Tissue microarrays were stained for MyD88 and TLR4, and staining intensity was classified using a 2-tiered system for each marker (weak vs strong). Expression of MyD88 and TLR4 was similar in all histotypes except clear cell ovarian cancer, which showed reduced expression compared with other histotypes (P<.001 for both). In HGSOC, strong MyD88 expression was modestly associated with shortened overall survival (hazard ratio [HR], 1.13; 95% CI, 1.01-1.26; P=.04) but was also associated with advanced stage (P<.001). The expression of TLR4 was not associated with survival. In low-grade serous ovarian cancer (LGSOC), strong expression of both MyD88 and TLR4 was associated with favorable survival (HR [95% CI], 0.49 [0.29-0.84] and 0.44 [0.21-0.89], respectively; P=.009 and P=.02, respectively). Results are consistent with an association between strong MyD88 staining and advanced stage and poorer survival in HGSOC and demonstrate correlation between strong MyD88 and TLR4 staining and improved survival in LGSOC, highlighting the biological differences between the 2 serous histotypes. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Abby, Sophie S.; Néron, Bertrand; Ménager, Hervé; Touchon, Marie; Rocha, Eduardo P. C.
2014-01-01
Motivation Biologists often wish to use their knowledge on a few experimental models of a given molecular system to identify homologs in genomic data. We developed a generic tool for this purpose. Results Macromolecular System Finder (MacSyFinder) provides a flexible framework to model the properties of molecular systems (cellular machinery or pathway) including their components, evolutionary associations with other systems and genetic architecture. Modelled features also include functional analogs, and the multiple uses of a same component by different systems. Models are used to search for molecular systems in complete genomes or in unstructured data like metagenomes. The components of the systems are searched by sequence similarity using Hidden Markov model (HMM) protein profiles. The assignment of hits to a given system is decided based on compliance with the content and organization of the system model. A graphical interface, MacSyView, facilitates the analysis of the results by showing overviews of component content and genomic context. To exemplify the use of MacSyFinder we built models to detect and class CRISPR-Cas systems following a previously established classification. We show that MacSyFinder allows to easily define an accurate “Cas-finder” using publicly available protein profiles. Availability and Implementation MacSyFinder is a standalone application implemented in Python. It requires Python 2.7, Hmmer and makeblastdb (version 2.2.28 or higher). It is freely available with its source code under a GPLv3 license at https://github.com/gem-pasteur/macsyfinder. It is compatible with all platforms supporting Python and Hmmer/makeblastdb. The “Cas-finder” (models and HMM profiles) is distributed as a compressed tarball archive as Supporting Information. PMID:25330359
The Economy of Energy Conservation in Educational Facilities. A Report. Revised Edition.
ERIC Educational Resources Information Center
Educational Facilities Labs., Inc., New York, NY.
This is an update of the 1973 edition of a guide for energy conservation in schools. This Educational Facilities Laboratories publication is an information source for teachers, school administrators, school maintenance personnel, school designers, or anyone interested in conserving energy in schools. Topics discussed include: (1) life-cycle…
Biodiesel Handling and Use Guide (Fifth Edition)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alleman, Teresa L.; McCormick, Robert L.; Christensen, Earl D.
This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It provides basic information on the proper and safe use of biodiesel and biodiesel blends in engines and boilers, and is intended to help fleets, individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel fuels.
Biodiesel Handling and Use Guide (Fifth Edition)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alleman, Teresa L.; McCormick, Robert L.; Christensen, Earl D.
2016-11-08
This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It provides basic information on the proper and safe use of biodiesel and biodiesel blends in engines and boilers, and is intended to help fleets, individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel fuels.
The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops
Khatodia, Surender; Bhatotia, Kirti; Passricha, Nishat; Khurana, S. M. P.; Tuteja, Narendra
2016-01-01
The Clustered Regularly Interspaced Short Palindromic Repeats associated Cas9/sgRNA system is a novel targeted genome-editing technique derived from bacterial immune system. It is an inexpensive, easy, most user friendly and rapidly adopted genome editing tool transforming to revolutionary paradigm. This technique enables precise genomic modifications in many different organisms and tissues. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double-stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE) crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in a changing climate. The emerging areas of research for the genome editing in plants include interrogating gene function, rewiring the regulatory signaling networks and sgRNA library for high-throughput loss-of-function screening. In this review, we have described the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been described. With this powerful and innovative technique the designer GE non-GM plants could further advance climate resilient and sustainable agriculture in the future and maximizing yield by combating abiotic and biotic stresses. PMID:27148329
Bibliography of In-House and Contract Reports, Supplement 12.
1984-03-01
A134 952 Karow, Kenneth ADVANCE EDIT SYSTEM January 1983 Sonicraft, Inc. DAAK70-79-C-0 180 Keywords: Automated Cartography, Digital Data Editing...Interactive Graphics. An advanced edit system with high resolution interactive graphic workstations and support software for editing digital cartographic...J.R. OF INERTIAL SURVEY DATA Wei, S.Y. December 1982 Litton Guidance and Control Systems DAAK-70-81-C-0082 Keywords: Collocation, Gravity vector
Combined Edition of Family Planning Library Manual and Family Planning Classification.
ERIC Educational Resources Information Center
Planned Parenthood--World Population, New York, NY. Katherine Dexter McCormick Library.
This edition combines two previous publications of the Katharine Dexter McCormick Library into one volume: the Family Planning Library Manual, a guide for starting a family planning and population library or information center, and the Family Planning Classification, a coding system for organizing book and non-book materials so that they can be…
In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.
Chen, Xiaoyu; Janssen, Josephine M; Liu, Jin; Maggio, Ignazio; 't Jong, Anke E J; Mikkers, Harald M M; Gonçalves, Manuel A F V
2017-09-22
Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.CRISPR-Cas9-based gene editing involves double-strand breaks at target sequences, which are often repaired by mutagenic non-homologous end-joining. Here the authors use Cas9 nickases to generate coordinated single-strand breaks in donor and target DNA for precise homology-directed gene editing.
Gandica, Y; Carvalho, J; Sampaio Dos Aidos, F
2015-01-01
A model for the probabilistic function followed in editing Wikipedia is presented and compared with simulations and real data. It is argued that the probability of editing is proportional to the editor's number of previous edits (preferential attachment), to the editor's fitness, and to an aging factor. Using these simple ingredients, it is possible to reproduce the results obtained for Wikipedia editing dynamics for a collection of single pages as well as the averaged results. Using a stochastic process framework, a recursive equation was obtained for the average of the number of edits per editor that seems to describe the editing behavior in Wikipedia.
NASA Astrophysics Data System (ADS)
Gandica, Y.; Carvalho, J.; Sampaio dos Aidos, F.
2015-01-01
A model for the probabilistic function followed in editing Wikipedia is presented and compared with simulations and real data. It is argued that the probability of editing is proportional to the editor's number of previous edits (preferential attachment), to the editor's fitness, and to an aging factor. Using these simple ingredients, it is possible to reproduce the results obtained for Wikipedia editing dynamics for a collection of single pages as well as the averaged results. Using a stochastic process framework, a recursive equation was obtained for the average of the number of edits per editor that seems to describe the editing behavior in Wikipedia.
TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites
Ammerman, Michelle L.; Presnyak, Vladimir; Fisk, John C.; Foda, Bardees M.; Read, Laurie K.
2010-01-01
TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5′ ends of pan-edited RNAs than at their 3′ ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3′ to 5′ progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3′ ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA–RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3′ to 5′ progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs. PMID:20855539
Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition.
Lostalé-Seijo, Irene; Louzao, Iria; Juanes, Marisa; Montenegro, Javier
2017-12-01
The discovery of RNA guided endonucleases has emerged as one of the most important tools for gene edition and biotechnology. The selectivity and simplicity of the CRISPR/Cas9 strategy allows the straightforward targeting and editing of particular loci in the cell genome without the requirement of protein engineering. However, the transfection of plasmids encoding the Cas9 and the guide RNA could lead to undesired permanent recombination and immunogenic responses. Therefore, the direct delivery of transient Cas9 ribonucleoprotein constitutes an advantageous strategy for gene edition and other potential therapeutic applications of the CRISPR/Cas9 system. The covalent fusion of Cas9 with penetrating peptides requires multiple incubation steps with the target cells to achieve efficient levels of gene edition. These and other recent reports suggested that covalent conjugation of the anionic Cas9 ribonucleoprotein to cationic peptides would be associated with a hindered nuclease activity due to undesired electrostatic interactions. We here report a supramolecular strategy for the direct delivery of Cas9 by an amphiphilic penetrating peptide that was prepared by a hydrazone bond formation between a cationic peptide scaffold and a hydrophobic aldehyde tail. The peptide/protein non-covalent nanoparticles performed with similar efficiency and less toxicity than one of the best methods described to date. To the best of our knowledge this report constitutes the first supramolecular strategy for the direct delivery of Cas9 using a penetrating peptide vehicle. The results reported here confirmed that peptide amphiphilic vectors can deliver Cas9 in a single incubation step, with good efficiency and low toxicity. This work will encourage the search and development of conceptually new synthetic systems for transitory endonucleases direct delivery.
Investigation of Y 88 via ( p , d γ ) reactions
Hughes, R. O.; Burke, J. T.; Casperson, R. J.; ...
2016-02-18
We studied the low-spin structure of odd-odd 88Y via (p,dγ) reactions on an 89Y target. The K150 Cyclotron at the Texas A&M University Cyclotron Institute was employed to provide a 28.5-MeV proton beam, and particle-γ and particle-γ-γ coincidence data were collected with the STARLiTeR array. Moreover, a number of new levels and γ rays have been observed below 2.5 MeV, while level and γ-ray energies as well as spin-parity assignments have been re-evaluated.
[Role of necroptosis in aluminum induced SH-SY5Y cell death].
Niu, Qiao; Zhang, Qin-li; Zheng, Jin-ping; Liu, Cheng-yun; Wang, Liang
2009-02-01
To study whether necroptosis exists or not in neural cell death induced by aluminum. SH-SY5Y cells were treated with 4 mmol/L AlCl(3) x 6H(2)O The cell viability was determined with CCK-8 kit after treated with Nec-1 at different dosages (0, 30, 60, 90 micromol/L). Mitochondria membrane potential (MMP), content of reactive oxygen species (ROS), and apoptotic rate/necrotic rates were measured with cytometry. Nec-1 ameliorated the necrotic-like cell morphology, the cell viability were 0.28 +/- 0.05, 0.58 +/- 0.03, 0.68 +/- 0.04, and 1.03 +/- 0.17, there were significant differences between the Nec-1 treated groups and that of controls (t values were 3.25, 3.36, 4.56; P < 0.05). After Nec-1 treatment, the necrotic rates were 16.46% +/- 0.54%, 10.40% +/- 0.64%, 5.43% +/- 0.68%, and 6.28% +/- 0.35%, there were significant differences between the Nec-1 treated cells and that of controls (t values were 3.62, 7.32, 6.96; P < 0.05); while the apoptotic rates were 8.68 +/- 0.36, 7.66 +/- 0.53, 5.68 +/- 0.41, and 4.13 +/- 0.41, there was no significant difference among the groups (F = 6.33, P = 0.11). Cytometry had shown the increased cell MMPs after Nec-1 treatment, which were 67.54 +/- 6.36, 49.42 +/- 5.96, 84.79 +/- 6.86, and 95.51 +/- 7.01, there were significant differences as comparing MMPs of the middle and high dosage of Nec-1 treated cells with those of controls (t values were 3.21, 4.01; P < 0.05); while ROS contents in the Nec-1 treated SH-SY5Y cells were 54.07 +/- 3.32, 52.79 +/- 2.36, 54.68 +/- 1.91, and 59.23 +/- 2.96, there was no significant difference among the groups (F = 5.26, P = 0.19). Nec-1, as a specific inhibitor of necroptosis, might effectively block the cell death pathway induced by aluminum, it indicates that necroptosis should be one of the major causes of the SH-SY5Y cell toxicity induced by aluminum, and necroptosis also plays an important role in aluminum induced SH-SY5Y cell death.
Wang, Gang; Yang, Luhan; Grishin, Dennis; Rios, Xavier; Ye, Lillian Y; Hu, Yong; Li, Kai; Zhang, Donghui; Church, George M; Pu, William T
2017-01-01
Genome editing of human induced pluripotent stem cells (hiPSCs) offers unprecedented opportunities for in vitro disease modeling and personalized cell replacement therapy. The introduction of Cas9-directed genome editing has expanded adoption of this approach. However, marker-free genome editing using standard protocols remains inefficient, yielding desired targeted alleles at a rate of ∼1-5%. We developed a protocol based on a doxycycline-inducible Cas9 transgene carried on a piggyBac transposon to enable robust and highly efficient Cas9-directed genome editing, so that a parental line can be expeditiously engineered to harbor many separate mutations. Treatment with doxycycline and transfection with guide RNA (gRNA), donor DNA and piggyBac transposase resulted in efficient, targeted genome editing and concurrent scarless transgene excision. Using this approach, in 7 weeks it is possible to efficiently obtain genome-edited clones with minimal off-target mutagenesis and with indel mutation frequencies of 40-50% and homology-directed repair (HDR) frequencies of 10-20%.
Nandrolone decreases mu opioid receptor expression in SH-SY5Y human neuroblastoma cells.
Guarino, Goffredo; Spampinato, Santi
2008-07-16
Nandrolone and other anabolic androgenic steroids alter the expression and function of neurotransmitter systems and contribute to drug dependence. Nandrolone treatment (10-10 M) caused a time-dependent and concentration-dependent downregulation of mu opioid receptor (MOPr) transcripts in SH-SY5Y human neuroblastoma cells. This effect was prevented by the androgen receptor antagonist hydroxyflutamide. Receptor binding assays confirmed a decrease in MOPr of approximately 40% in nandrolone-treated cells. Treatment with actinomycin D (10 (-5)M), a transcription inhibitor, revealed that nandrolone might regulate MOPr mRNA stability. In SH-SY5Y cells transfected with a human MOPr luciferase promoter/reporter construct, nandrolone did not alter the rate of gene transcription. These results suggest that nandrolone may regulate MOPr expression through posttranscriptional mechanisms requiring the androgen receptor.
Design and assessment of engineered CRISPR-Cpf1 and its use for genome editing.
Li, Bin; Zeng, Chunxi; Dong, Yizhou
2018-05-01
Cpf1, a CRISPR endonuclease discovered in Prevotella and Francisella 1 bacteria, offers an alternative platform for CRISPR-based genome editing beyond the commonly used CRISPR-Cas9 system originally discovered in Streptococcus pyogenes. This protocol enables the design of engineered CRISPR-Cpf1 components, both CRISPR RNAs (crRNAs) to guide the endonuclease and Cpf1 mRNAs to express the endonuclease protein, and provides experimental procedures for effective genome editing using this system. We also describe quantification of genome-editing activity and off-target effects of the engineered CRISPR-Cpf1 in human cell lines using both T7 endonuclease I (T7E1) assay and targeted deep sequencing. This protocol enables rapid construction and identification of engineered crRNAs and Cpf1 mRNAs to enhance genome-editing efficiency using the CRISPR-Cpf1 system, as well as assessment of target specificity within 2 months. This protocol may also be appropriate for fine-tuning other types of CRISPR systems.